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Abstract

Most theoretical work on analyzing the plume’s spreading at the field scale in a partially
saturated heterogeneous formation assumes weak stationarity of velocity field. While
this assumption is not applicable to the case of a bounded flow domain, the nonsta-
tionarity in fluctuations of unsaturated velocity fields is induced through the presence5

of the boundary conditions in the flow domain. In this work, we attempt to quantify the
large-time macrodispersion in nonstaionary unsaturated velocity fields caused by the
presence of a fixed head boundary condition. Application of the perturbation-based
nonstationary spectral approach leads to an analytical expression for the macrodisper-
sion describing the field-scale dispersive solute flux in terms of the statistical moments10

of two formation parameters, i.e. the Gardener’s parameter (α) and the saturated hy-
draulic conductivity (Ks). The results predicted from the expression indicate that the
enhanced unsaturated plume’s spreading can arise from a larger correlation scale of
lnKs or lnα fields. In addition, the α-parameter takes the role in reducing the field-scale
plume spreading.15

1 Introduction

The spatial variability in the specific discharge fields, arising from the heterogeneities
of the geologic formations, enhances the spreading of nonreactive field-scale plumes
in heterogeneous formations. The common theme in analyzing the transport processes
of field-scale plumes for various stochastic methods is therefore to relate the statistics20

of the solute displacement or the solute dispersive flux to the statistics of the specific
discharge fields. As such, the field-scale spreading of solute plumes may be described
through the macrosispersion tensor (e.g. Dagan, 1989; Gelhar, 1993; Rubin, 2003).

Most of stochastic analyses of field-scale solute transport processes have been per-
formed under the assumption of weak stationarity of velocity field, which is the conse-25

quence of the assumptions of an unbounded flow domain and uniformity of mean flow.
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However, some real-world problems of solute transport in heterogeneous subsurface
formations demand predictions over a finite flow domain. It has been recognized that
the conditions of finite boundary could cause flow nonuniformity in the mean and in
turn the nonstationarity in specific discharge field. The flow nonstationarity significantly
impacts the spreading of the solute plume (e.g. Sun and Zhang, 2000; Wu et al., 2003;5

Dai et al., 2007; Lu et al., 2010). The practical implication of that is clear: the use of
the approach appropriate for the unbounded domain may result in a significant error in
quantifying the field-scale dispersion process in the nonstationary flow field. The field-
scale transport processes are obviously influenced in more complicated ways by the
nonstationary velocity fields. That is why the problem of plume transport by nonstation-10

ary groundwater flow at the field scale has so far attracted only limited attention in the
groundwater hydrology literature.

Existing stochastic studies on the issue of transport process of field-scale plumes in
nonstationary groundwater flow fields (e.g. Rubin and Bellin, 1994; Rubin and Seong,
1994; Indelman and Rubin, 1996; Zhang, 1999; Sun and Zhang, 2000; Foussereau15

et al., 2000; Destouni et al., 2001; Wu et al., 2003; Hu, 2006; Dai et al., 2007; Russo
and Fiori, 2009; Lu et al., 2010) have been carried out from the Lagrangian perspective.
So far the analysis of transport of the field-scale plumes in nonstationary unsaturated
groundwater flow fields using the Eulerian concept has not been presented, and this is
the task we attempt to study here. This work presents as an initial attempt in analyzing20

the spreading process of field-scale unsaturated plumes within the Eulerian frame-
work. To simplify the analysis of unsaturated transport process, we focus on the case
where the nonstationarity in flow velocity field is induced only through the presence of
a fixed head boundary condition at an arbitrary depth in the domain and a constant
flux at the land surface. That is, the present investigation of field-scale unsaturated25

transport processes is an extension of the previous study of bounded unsaturated flow
processes in heterogeneous aquifers by Chang and Yeh (2009). The following analysis
will be performed by the application of Fourier–Stieltjes integral representations of the
randomly nonstationary fluctuations (Li and McLaughlin, 1991). We hope that the new
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findings presented in this paper may be of interest to researchers in seeking for further
research.

2 Formulation of stochastic unsaturated solute transport equation

We consider the case of the steady-state transport of nonreactive conservative solute
plumes in variably saturated, heterogeneous formations. The flow system we investi-5

gate is of infinite extent along the horizontal direction, where a constant flux is intro-
duced on the top and a prescribed capillary pressure head is specified at the lower
boundary. The steady-state transport of plumes at a local scale modeled through the
mass conservation equation is given by (e.g. Bear, 1979)

∂
∂Xi

(θDi j
∂C
∂Xj

)− ∂
∂Xi

(qi C) = 0 i , j = 1,2,3 (1)10

where C is the solute concentration, qi is the i th component of the specific discharge
q, Di j are the components of the local dispersion coefficient tensor, and θ is the soil
moisture content.

The effects of the pore-scale dispersion and the spatial variations in moisture content
are negligible when compared with that of varying hydraulic conductivity. This simplifies15

Eq. (1) to

θDi j
∂2C

∂Xi ∂Xj
− ∂
∂Xi

(qi C) = 0 (2)

Note that it has been concluded from Russo (1998) and Harter and Zhang (1999) that
the field-scale dispersion at the large time is insensitive to variability in water content
compared to the variability of lnKs.20

The development of equations for the stochastic mean concentration and pertur-
bation starts from the local transport equation, Eq. (2). Consider that C and qi are
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realizations of the random variables represented, respectively, by a small perturbation
expansion (Gelhar and Axness, 1983)

C = 〈C〉+C′ (3)
qi = 〈qi 〉+q′

i (4)
5

where the expected value operator is denoted by the angle bracket. The substitution
of the perturbation expansions of Eqs. (3) and (4) into Eq. (2) produces the stochastic
transport equation. The following form for the mean equation of solute transport is
obtained after expanding terms in the stochastic transport equation and taking the
ensemble average of them10

θDi j (H)
∂2 〈C〉

∂Xi ∂Xj
− ∂
∂Xi

[〈qi 〉 〈C〉]−
∂

∂Xi
〈q′

i C
′〉 = 0 (5)

where H denotes the average of capillary tension head.
To utilize Eq. (5), one must estimate the ensemble average of the products of fluc-

tuations. This can be determined from the stochastic perturbation equation, which, in
turn, is obtained by subtracting Eq. (5) from Eq. (2)15

θDi j (H) ∂2C′

∂Xi ∂Xj
− ∂
∂Xi

(〈qi 〉C′)− ∂
∂Xi

(q′
i 〈C〉) = 0 (6)

Note that the assumption of negligible fluctuation of second-order products (i.e.
q′
iC′− < q′

iC
′ >∼ 0) has been made in the development of Eq. (6).

The validity of the small perturbation approximation (i.e. the convergence of Eqs. 3
and 4) is preserved by that σ2

f (the variance of log saturated hydraulic conductivity)20

should be small compared to unity (Gutjahr and Gelhar, 1981). However, the study of
Monte Carlo simulations of two-dimensional flow through heterogeneous formations
by Zhang and Winter (1999) confirmed the accuracy of the head moment solutions ob-
tained from the application of the small perturbation approximation in σ2

f at the variance
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up to 4.38. Similar comparison with Monte Carlo simulations reported in Guadagnini
and Neuman (1999) yields accurate results (namely, the statistics of hydraulic head)
even for σ2

f as high as 4 to 5 (strongly heterogeneous media).
Equations (5) and (6) are simplified by taking the mean specific discharge in the

X1 direction (i.e. 〈q〉 = (〈q1〉, 〈q2〉, 〈q3〉) = (q, 0, 0)) and approximating the pore-scale5

dispersion tensor in the form (Bear, 1979; Gelhar and Axness, 1983)

θDi j (H) =

αL |q| 0 0
0 αT |q| 0
0 0 αT |q|

 (7)

where αL and αT denote the longitudinal and transverse pore-scale dispersivities, re-
spectively, and |q| denotes the magnitude of q. As such,

|q|
[
αL

∂2 〈C〉
∂X 2

1

+αT

(
∂2 〈C〉
∂X 2

2

+
∂2 〈C〉
∂X 2

3

)]
−q

∂ 〈C〉
∂X1

− ∂
∂Xi

〈q′
i C

′〉 = 0 (8)10

|q|
[
αL

∂2C′

∂X 2
1

+αT

(
∂2C′

∂X 2
2

+ ∂2C′

∂X 2
3

)]
−q

∂C′

∂X1
−q′

i
∂ 〈C〉
∂Xi

= 0 (9)

where the conservation for the fluid mass has been applied in the development of
Eqs. (8) and (9).

The cross-correlation term in Eq. (8), referred to as macrodispersive flux by Gel-15

har and Axness (1983), has been used to quantify the field-scale dispersion effect in
saturated heterogeneous media. It creates additional mass transport arising from the
correlation between the variation in specific discharge and concentration. Note that the
term in Eq. (9), involving the product of specific discharge perturbation and mean con-
centration gradient, serves as the source in contributing to the output perturbations in20

concentration field. In other words, Eq. (9) links the output variation in concentration
fields to the input variation in specific discharge fields.
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In the following section, we attempt to quantify the macrodispersive solute flux in
Eq. (8), describing the field-scale spreading behavior, in terms of statistical properties
of the specific discharge fields. This may be obtained from solving Eq. (9).

3 Concentration perturbation

It is recognized that there is a disparity in scale between the mean and the perturba-5

tion in the concentration field. Generally the mean concentration field is slowly varying
in space. The scale on which the perturbations in the concentration field fluctuate is
much smaller than that related to the variation in the mean concentration field (e.g.
Gelhar and Axness, 1983; Vomvoris and Gelhar, 1990). It is then possible to simplify
the perturbation equation, Eq. (9), by approximating the mean concentration gradient,10

the coefficient in Eq. (9), as a constant when solving Eq. (9). And within this framework,
the solution of Eq. (9) allows for quantifying the macrodispersive flux term in Eq. (8). It
must be noticed that the assumption of spatially uniform mean concentration can not be
made in the prediction of the spreading process of field-scale plumes near the source
of plume where a sharp concentration gradient exists. In other words, the asymptotic15

transport relationship is applicable only after a substantial displacement distance. In
addition, it is according to previous studies (Russo, 1996, 1998) that the spreading
of the field-scale plume would therefore reach its large-time behavior as long as the
lateral length scale which is used to characterize the size of the solute body is much
larger than the scale of heterogeneity .20

To solve Eq. (9), the coefficients q and q′
i in Eq. (9) must be specified first. Those

can be determined simply from the work of Chang and Yeh (2009) in which the general
expressions for the mean and perturbation of the specific discharge were developed.
They considered the case where a constant specific flux q0 is introduced on the soil
surface X1 = XL, the prescribed pressure head ϕ0 is specified at X1 = X0. One can25

obtain the mean specific flux, q, from Chang and Yeh (2009) (by substituting their
Eqs. 40 and 41 into Eqs. 37 and 38, respectively) as
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q = −q0 (10)

where q is negative for infiltration and

q′
i (X ) = −q0

∞∫
−∞

RiR1 −δi1R
2

R2 − iαgR1

exp(iR ·X)dZf (R)+q0
{
Λexp[−αg(X1 −X0)]

∞∫
−∞

iαgRi −δi1(R2 + iαgR1)

R2 + iαgR1

exp[iR ·X]dZβ(R)+δi1

∞∫
−∞

exp[iR ·X]dZβ(R)

 . (11)

5

In Eq. (11), α is the soil pore-size distribution parameter, αg = exp(〈lnα〉), Ri are the
components of the wave number vector R, dZf (R) and dZβ(R) are the zero-mean ran-
dom Fourier–Stieltjes increments of lnKs and lnα fields, respectively, and

Λ =
exp(F )
q0

exp(αgϕ0)+1 (12)

where F = 〈lnKs〉. Note that the Gardner exponential constitutive model (Gardner,10

1958) and the statistical independence of lnKs and lnα random processes have been
assumed in the development of these expressions. In addition, X in Eq. (11) denotes
the absolute position, not the separation lag.

An efficient approach for developing the analytical solution to the perturbation trans-
port equation is through the Fourier–Stieltjes integral representation of a stationary or15

stationary-increment random field (e.g. Gelhar and Axness, 1983; Vomvoris and Gel-
har, 1990; Rehfelt and Gelhar, 1992). As indicated in Eq. (11), the specific discharge
perturbation is space-dependent, which is the cause of the effect of a finite flow domain
(Chang and Yeh, 2009). This space-variant coefficient will lead the output perturba-
tion in concentration field in Eq. (9) to be nonstationary. Therefore, the infinite-domain20
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spectral theory (stationary spectral theory) may not be directly applicable to the case
of solute transport in nonuniform flow fields (such as Eq. 9). The solution of Eq. (9)
may be determined from the use of the nonstationary spectral representation (Li and
McLaughlin, 1991) based on the Fourier–Stieltjes integral representation of a nonsta-
tionary random field in terms of a transfer function.5

Note that the spatial variability of specific discharge, which is the outcomes of the
spatial variations in lnKs and lnα, contributes to the spatial variation in concentration
field. Motivated by that, the response to the linear Eq. (9), the concentration fluctuation,
is separated into two parts: one representing the outcome of the variation in lnKs field
and the other the variation in the lnα field. We then replace C′ in Eq. (9) by10

C′ = C′
f +C′

β =

∞∫
−∞

ΦCf (X,R)dZf (R)+

∞∫
−∞

ΦCβ(X,R)dZβ(R) (13)

where ΦCf (X,R) and ΦCβ(X,R) are unknown transfer functions. The components in
Eq. (13) represent the consequences of the spatial variations in lnKs, and lnα fields,
respectively. Substituting Eqs. (10), (11) and (13) into Eq. (9), separating the two com-
ponents and making use of the uniqueness of the spectral representation leads Eq. (9)15

to the following two differential equations:

αL
∂2ΦCf

∂X 2
1

+αT

(
∂2ΦCf

∂X 2
2

+
∂2ΦCf

∂X 2
3

)
+
∂ΦCf

∂X1
=

−RiR1 +δi1R
2

R2 − iαgR1

exp(iR ·X)
∂ 〈C〉
∂Xi

(14)

αL

∂2ΦCβ

∂X 2
1

+αT

(
∂2ΦCβ

∂X 2
2

+
∂2ΦCβ

∂X 2
3

)
+
∂ΦCβ

∂X1

=

{
Λexp(−αgX1)

[
iαgRi

R2 + iαgR1

−δi1

]
+δi1

}
exp(iR ·X)

∂ 〈C〉
∂Xi

(15)
20
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The solutions of Eqs. (14) and (15) give the following two transfer functions, respec-
tively, as

ΦCf =
exp(iR ·X)

−iR1 +αLR
2
1 +αT

(
R2

2 +R2
3

) RiR1 −δi1R
2

R2 − iαgR1

∂ 〈C〉
∂Xi

(16)

ΦCβ = −

Λ
exp[−αg(X 1 −X0)]

i (2µ−1)R1 +αLR
2
1 +αT

(
R2

2 +R2
3

)
+αg(1−µ)

[
iαgRi

R2 + iαgR1

−δi1

]

+δi1
1

αLR
2
1 − iR1

}
exp(iR ·X)

∂ 〈C〉
∂Xi

(17)5

where µ = αgαL. The fluctuations in concentration field can then be determined by
applying Eqs. (16) and (17) into Eq. (13).

4 Field-scale macrodispersion coefficient

The cross-correlation term, macrodispersive flux, in Eq. (8) can be determined from10

multiplying Eq. (13) by the complex conjugate of Eq. (11), taking the expected value,
and applying the theorem of the spectral representation. The result is

〈C′q′〉 = q0(Afi i +Aβi i
)Gi (18)

where Gi = −∂〈C〉/∂Xi , Afi i and Aβi i
are the macrodispersivities in the principal coordi-

nate directions defined, respectively, as15

Afi i =

∞∫
−∞

(
RiR1 −δi1R

2
)2

R4 +α2
gR

2
1

Sf f (R)

−iR1 +αLR
2
1 +αT

(
R2

2 +R2
3

)dR (19)
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and

Aβi i
= Λ2 exp[−2αg(X1 −X0)]

∞∫
−∞

α2
gR

2
i

R4 +α2
gR

2
1

Sββ(R)dR

i (2µ−1)R1 +αLR
2
1 +αT

(
R2

2 +R2
3

)
+αg(1−µ)

+δi1Λ
2 exp[−2αg(X1 −X0)]

∞∫
−∞

(
1−2

α2
gRiR1

R4 +α2
gR

2
1

)
Sββ(R)dR

i (2µ−1)R1 +αLR
2
1 +αT

(
R2

2 +R2
3

)
+αg(1−µ)

5

+δi1Λexp[−αg(X1 −X0)]

∞∫
−∞

αgRi

(
αgR1 + iR2

)
R4 +α2

gR
2
1

−1

 Sββ(R)dR

i (2µ−1)R1 +αLR
2
1 +αT

(
R2

2 +R2
3

)
+αg(1−µ)

+δi1Λexp[−αg(X1 −X0)]

∞∫
−∞

αgRi

(
αgR1 − iR2

)
R4 +α2

gR
2
1

−1

 Sββ(R)

αLR
2
1 − iR1

dR+δi1

∞∫
−∞

Sββ(R)

αLR
2
1 − iR1

dR (20)

10

where Sββ(R) and Sf f (R) are the spectral density functions of lnα and lnKs fluctuations,
respectively. From Eqs. (8) and (18), the resulting ensemble average of concentration
field is thus governed by the following convection-dispersion equation

(αL +Af11
+Aβ11

)
∂2 〈C〉
∂X 2

1

+ (αT +Af22
+Aβ22

)

(
∂2 〈C〉
∂X 2

2

+
∂2 〈C〉
∂X 2

3

)
+
∂ 〈C〉
∂X1

= 0 (21)

with Af33
= Af22

and Aβ33
= Aβ22

.15
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To simplify the initial analysis within the Eulerian framework, we assume that the local
process is isotropic (αL = αT) and the medium is statistically isotropic. An exponential
correlation function (Zhang and Winter, 1998; Zhang, 1999) is used to represent the
correlation structure of random lnKs or lnα fields, which has the spectrum

Sf f (R) =
σ2
f λ

3
f

π2(1+ λ2
f R

2)2
(22)5

for the lnKs fluctuations or

Sββ(R) =
σ2
βλ

3
β

π2(1+ λ2
βR

2)2
(23)

for the lnα fluctuations. In Eqs. (22) and (23), λf and σ2
f denote the correction scale and

variance of the lnKs fluctuations, respectively, while λβ and σ2
β denote the correction

scale and variance of the lnα fluctuations, respectively.10

With Eq. (22), the computation of the macrodispersivity integral Eq. (19), produced
by the influence of the variation in lnKs fields, over the wave number domain yields

Af11
= σ2

f

αL

1−µ2

[
ξ3 −2µ2ξ+4µ3

µξ2
+4

µ

ξ3
(ξ2 −µ2) ln(

µ+ ξ
µ

)−
ξ3 −2ξ+4

ξ2

−4
ξ2 −1

ξ3
ln(1+ ξ)

]
(24)

15

where ξ = αgλf . In general, the evaluation of Eq. (20) with Eq. (23) cannot be per-
formed analytically. However, to take the advantage of the analytical solution, offering
a clear insight for the role of the statistics of two formation parameters in influencing the
large-time behavior of macrodispersion, we focus only on the case where αgαL � 1.
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Note that the typical values for αL and α−1 would probably be from 10−2 m to 1 m (Gel-
har et al., 1979; Matheron and de Marsily, 1980) and 0.2 m to 2 m (Yeh et al., 1985),
respectively. Under that conduction, the longitudinal macrodispersivity, caused by the
effect of the variation of lnα, can be estimated as

Aβ11
≈ σ2

βΛ(αg)exp[−αg(X1 −X0)]{Λ(αg)exp[−αg(X1 −X0)]−1}5

αL

1−µ2

(
1+

ε
µ
− ε
ε+µ

−ε− 1
1+ε

)
(25)

where ε = αgλβ and Λ(αg) is defined by Eq.(12).
The plot of Eq. (24) presented as the function of the lnKs correlation scale for se-

lected values of αg is shown in Fig. 1. The larger the lnKs correlation scale, the more10

the plume spreads, as indicated in the figure. An increase in the correlation scale of
lnKs introduces a larger spatial consistency of fluctuations in the specific discharge
above or below the mean specific discharge, and consequently produces a greater
specific discharge variance. The fluctuations in specific discharge contribute to the ir-
regular character of the concentration distribution in the field-scale unsaturated plumes15

and enhance the field-scale plume spreading. Also, from Fig. 1, if the correlation scale
of lnKs and αL remain constant, the macrodispersivity will decrease with αg. A larger
αg results in the smaller unsaturated hydraulic conductivity variability and, in turn, the
smaller specific discharge variability (Yeh et al., 1985). Consequently, less spreading
of the solute will take place.20

Figure 2 illustrates how the longitudinal macrodispersivity component in Eq. (25)
varies with the correction scale of the log α-parameter. The log α-parameter correla-
tion scale is of importance in increasing the variability of unsaturated hydraulic con-
ductivity and thereby the variability of specific discharge (Chang and Yeh, 2009), which
enhances the field-scale plume spreading. As expected, the spreading of the solute25

plume is correlated inversely with the α-parameter for fixed values of λβ and αL. The
plot of dependence of longitudinal macrodispersivity upon the position is illustrated
in Fig. 3 based on Eq. (25). The longitudinal macrodispersivity component increases
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rapidly with the position at the beginning, then has practically attained its asymptotic
value when the plume is close to the downstream boundary of the constant head. This
behavior is the outcome of the spatial variations in specific discharge field.

5 Concluding remarks

The work uses the nonstationary spectral perturbation techniques to develop a closed-5

form expression quantifying the field-scale plume spreading in a partially saturated
heterogeneous aquifer. This expression, related to the statistics of two formation pa-
rameters, i.e. lnKs and lnα, is allowed to investigate how these statistical properties
influence the spreading process of the field-scale unsaturated plume.

Our results indicate that the field-scale dispersive solute flux increases with the vari-10

abilities of these two parameters. The correlation scales of these two parameters in-
fluence the spreading of the field-scale unsaturated plumes positively. In addition, the
α-parameter is of great importance in reducing the field-scale plume spreading.
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Fig. 1. Dimensionless component of the longitudinal macrodispersivity as a function of dimen-
sionless lnKs correlation scale.
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Fig. 2. Dimensionless component of the longitudinal macrodispersivity as a function of dimen-
sionless lnα correlation scale.
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Fig. 3. Dimensionless component of the longitudinal macrodispersivity as a function of di-
mensionless position, where the dimensionless flow domain we investigate corresponds to
0 < (X1−X0)/αL < (XL−X0)/αL, and (X1−X0)/αL = 0 corresponds to the location of the bottom
of the flow domain.
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